On Digraphs Associated to Quadratic Congruence Modulo n

Dr. Hamza Daoub Dept. of Mathematics, Faculty of Sciences Zawia University

Abstract:

For a finite commutative ring A, the mapping $\varphi: A \to A$ defined by $a \mapsto a^2$ could be interpreted as directed graph G = G(A), whose vertex set is A and arrows defined by φ . We invistigate the graph properties of G from the ring \mathbb{Z}_n of integers modulo n. Mathematica notebook is used to calculate and display the associated graph of certain rings.

Keywords: Digraphs, Commutative Ring, Cycle Length, Quadratic Congruence.

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017.

137

1.Introduction.

138

In recent years, there has been growing interest in the digraphs associated with the ring \mathbb{Z}_n , More specificaly (e.g [6], [1]). In 1996 Rogers' published paper [7] concerned the graph of the square mapping on the prime fields, which was a topic appended as a kind of postscript to his talks on discrete dynamical systems. Subsequently, Yangjiang WEI and Gaohua TANG generalized some previous results of the iteration digraphs from the ring \mathbb{Z}_n to finite commutative rings. Incidentally, Lipkovski investigated properties of a digraph representing quadratic polynomials with coefficients modulo *n*. Later, Christopher Ang and Alex Schulte published paper [3] concerned the structure of the sources in directed graphs of commutative rings with identity, with special concentration in the finite and reduced cases. In the present paper, however, a related connection between finite rings and digraphs is studied. This also has connections to elementary number theory. For an algebraic and number-theoretic notions used here, see [2], [8], [9]).

Let *A* be a finite commutative ring with unity (ring for short). Define a mapping $\varphi : A \to A$ by $a \mapsto a^2$. One can interpret this mapping as directed graph G = G(A), whose vertex set is *A* and arrows defined by φ . The main idea is to deduce, if possible, ring properties of *A* from graph properties of *G* (e.g., the number of components, the lengths of longest paths and longest loops, the maximal degree of vertices, etc.).

When we consider the solution of a quadratic congruence $ax^2 + bx + c \equiv 0 \pmod{n}$. The quadratic formula gives two roots. It uses the four arithmetic operations, addition, subtraction, multiplication and division, and also a square root. The new operation here is the square root of the discriminate.

To solve a congruence $x^2 \equiv r \pmod{n}$, one solves the same congruence modulo each prime power factor of n and combines the solutions using the Chinese Remainder Theorem. The real difficulty concerning with solving $x^2 \equiv r \pmod{p}$ when p is prime.

Specifically, our study offers the chance to study the interplay between the theoretic properties of the Quadratic congruence $x^2 \equiv r \pmod{n}$ in the finite commutative ring of integers \mathbb{Z}_n and the theoretic properties of the related $G = G(\mathbb{Z}_n)$.

2. Background:

It is well known in number theory that, For any a, b in \mathbb{Z}_n , with b > 0, there exist q, r in \mathbb{Z} such that a = bq + r and 0 < r < b. Indeed, if bq is the largest multiple of b that does not exceed a then the integer r = a - bq is certainly non-negative and, since b(q + 1) > a, we have r < b, see reference [2].

Definition 2.1. Let m > 0 be a positive integer. We say that two integers *a* and *b* are congruent modulo *m* if b - a is divisible by *m*.

Definition 2.2. Suppose that (a,m) = 1. Then *a* is called a quadratic residue of *m*, if the congruence $x^2 \equiv a \pmod{m}$ has a solution. If there is no solution, then *a* is called a quadratic nonresidue of *m*.

Since the derivative of x^2 is 2x, and $2x \equiv 0 \pmod{2}$ we have to distinguish between the cases p = 2 and p odd prime.

To decide whether a number a is a square mod m, it suffices to decide it is mod powers of primes dividing m.

Theorem 2.1. Let *p* be an odd prime, and (a, p) = 1. Then there is a solution of $x^2 = a \pmod{p^e}$, e > 1, if and only if there is a solution of $x^2 = a \pmod{p^e}$.

Proof: See Reference [10]

Theorem 2.2. Let $m = p_1^{e^1} p_2^{e^2} \dots p_r^{e^r}$. Then the number *a* is a square *mod m* iff there are numbers x_1, x_2, \dots, x_r such that

$$x_1^2 \equiv a \pmod{p_1^{e^1}}$$
$$x_2^2 \equiv a \pmod{p_2^{e^2}}$$
$$\vdots$$
$$x_r^2 \equiv a \pmod{p_r^{e^r}}$$

Proof: See Reference [10].

Theorem 2.3. If *p* is an odd prime, (a, p) = 1 and *a* is a quadratic residue of *p*, then the congruence $x^2 \equiv a \pmod{p}$ has exactly two roots.

Proof: This quadratic congruence has at least one root c. Therefore, -c is a root too, and $c \not\equiv -c \pmod{p}$. We know that a congruence $f(x) \equiv 0 \pmod{p}$ of degree n has at most n solutions. Thus, there can not be more than two roots.

Corollary 2.1. Let *p* be prime. The congruence

$$x^2 \equiv 1 \pmod{p}$$

has only the solutions $x = \pm 1 \pmod{p}$.

Proof: See Reference [5].

140

Theorem 2.4. Let p be an odd prime. Then there are exactly (p-1)/2 incongruent quadratic residues of p and exactly (p-1)/2 quadratic nonresidues of p.

Corollary 2.2. The equation $x^2 \equiv a \pmod{p}$ has no solution if and only if $a^{\frac{(p-1)}{2}} \equiv -1 \pmod{p}$.

Definition 2.3. An element x of R is called nilpotent if there exists an integer $m \ge 0$ such that $x^m = 0$.

Definition 2.4. An idempotent element of a ring is an element x such that $x^2 = x$.

One can also conclude that idempotent elements satisfy $x = x^2 = x^3 = x^4 = ... = x^n$ for any positive integer *n*. However, 0 and 1 are the only idempotents in a domain.

Proposition 2.1. If x is an idempotent, then y = 1 - x is also idempotent.

Proof: Observe that, $y^2 = (1 - x)^2 = 1 - 2x + x^2 = 1 - x = y$.

Definition 2.5. Let *n* be a positive integer. The Euler $\phi(n)$ is the number of all nonnegative integers *b* less than *n* which are prime to *n*.

It is clear to see that $\phi(1) = 1$ and $\phi(p) = p - 1$, for any prime p.

Proposition 2.2. (*Fermat's Little Theorem*). Let p be a prime. Any integer a satisfies $a^p \equiv a \pmod{p}$, and any integer a not divisible by p satisfies $a^{p-1} \equiv 1 \mod p$.

Proof: See Reference [4].

Proposition 2.3. If *g*. *c*. d(a, m) = 1, then $a^{\phi(m)} = 1 \pmod{m}$.

Proof: See Reference [4]..

Proposition 2.4. If d|(p-1), then $x^d \equiv 1 \pmod{p}$ has exactly d solutions.

Proof: See Reference [12].

Euler's function ϕ has the property that $\phi(n)$ is the order of the group U(n) of units of \mathbb{Z}_n . Carmichael lambda function is defined as follows:

-	1.7	-
-		-

Definition 2.6. The Carmichael function of a positive integer n, denoted $\lambda(n)$, is the smallest positive integer m such that $a^m \equiv$ 1 (mod n) for every integer a that is coprime to n.

We introduce some properties of Carmichael lambda function for the sake of completeness.

Proposition 2.3. (a) If $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ where p_1, p_2, \dots, p_r are and $a_1, a_2, ..., a_r > 0$, distinct primes then $\lambda(n) =$ $lcm(\lambda(p_1^{a_1}), \lambda(p_2^{a_2}), \ldots, \lambda(p_r^{a_r}))$. (b) If p is an odd prime and a > 0, then $\lambda(p^a) = \phi(p^a) = p^{a-1}(p-1)$. (c) $\lambda(2) = 1, \lambda(4) = 2$, and for $a \ge 3$, we have $\lambda(2^a) = 2^{a-2} = \frac{\phi(2^a)}{2}$.

It immediately follows from Proposition 2.5 that

$$\lambda(n) | \phi(n)$$

for all n and that $\lambda(n) = \phi(n)$ if and only if $n \in \{1, 2, 4, q^k, 2q^k\}$, where q is an odd prime and $k \ge 1$.

Theorem 2.5. (*Chinese Remainder Theorem*). Assume that m_1 , m_2 , ..., m_r are positive integers that are pairwise relatively prime (that is, $gcd(m_i, m_i) = 1$ if $i \neq j$). Then the system of congruences

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$
$$\vdots$$
$$x \equiv a_r \pmod{m_r}$$

has a unique solution $mod m_1m_2 \dots m_r$.

Proof: See Reference [5].

In graph theory, A *walk* of length k in G is a sequence of vertices $v_0, v_1, \ldots, v_{k-1}$ of G such that for each $i = 1, 2, \ldots, k-1$, the edge e_i

142	University Bulletin -	- ISSUE No.19-	Vol. (3) -	- July - 2017.
-----	-----------------------	----------------	------------	----------------

has tail v_{i-1} and head v_i . A walk is *closed* if $v_0 = v_{k-1}$. A *path* in *G* is a walk in which all the vertices are distinct.

Note that a *cycle* is a closed walk, where $v_0 = v_{k-1}$ and the vertices $v_0, v_1, \ldots, v_{k-1}$ are distinct from each other, thus the definition of length is still applicable.

A homomorphism of G to H, is a mapping $f:V(G) \to V(H)$ from G to H, such that it preserves edges, that is, if for any edge (u, v) of G, (f(u), f(v)) is an edge of H. We write simply $G \to H$.

If f is any homomorphism of G to H, then the digraph with vertices f(v), $v \in V(G)$, and edges f(v)f(w), $vw \in E(G)$ is a homomorphic image of G. Note that f(G) is a subgraph of H, and that $f : G \to f(G)$ is a surjective homomorphism.

In particular, homomorphisms of G to H map paths in G to walks in H, and hence do not increase distances (the minimum length of the paths connecting two vertices).

3. Main Results:

Let *p* and *q* be relatively prime numbers, such that n = pq, p < q. Define a map $f_1: \mathbb{Z}_n \to \mathbb{Z}_p$ that maps representatives $0 \le a < n$ in \mathbb{Z}_n to $(a \mod p)$ in \mathbb{Z}_p . Since *p* divides *n*, then f_1 is a homomorphism. Similarly, the same holds for $f_2: \mathbb{Z}_n \to \mathbb{Z}_q$.

Observe that mappings f_1 and f_2 induce mappings of corresponding graphs, which will be denoted again by f_1 and f_2 .

We will denote to cycles in $G(\mathbb{Z}_n)$ by $\overrightarrow{C_k}$. Furthermore, we will refer to \mathbb{Z}_n , \mathbb{Z}_p and \mathbb{Z}_q as sets of natural numbers.

143

3.1 Degrees of Vertices. In this work, we consider the degrees of vertices in $G(\mathbb{Z}_n)$. As usual, the outgoing (incoming) degree of a vertex v is the number of arrows going out (coming in) this vertex. Since φ is a function, so it is clear that the outgoing degree of each vertex is one. The question here is what the incoming degree of the vertex v is.

Proposition 3.1. The incoming degree of the vertex $a \in G$ equals the number of distinct roots of the quadratic polynomial $x^2 - a \in A[X]$.

Proof: If there is an arrow $x \to a$, then $x^2 = a$, and by Theorem 2.3 we deduce that the solutions are roots of this polynomial. Conversely, if x is a root of this polynomial, then there is an arrow $x \to a$, and for distinct roots such arrows are also distinct. In fact, if x_1, \ldots, x_k are all the distinct roots of the polynomial, then $x_i^2 = a$.

In the case of $G(\mathbb{Z}_n)$ for nonprime *n*, the incoming degree of a vertex v can be greater than 2, which depends on the different factorizations of $x^2 - a$.

Theorem 3.1. Let $p_1, p_2, ..., p_k$ be the composition of the number n. Then the highest degree of a vertex v in the graph $G(\mathbb{Z}_n)$ is less than or equal to 2^k .

Proof: Let $x^2 - a = 0$ be an reducible quadratic polynomial over \mathbb{Z}_n . From Theorem 2.3, we have

 $deg(v) = 2 \times 2 \times ... \times 2 \quad (k - times) = 2^k$

3.2 Components and Closed Cycles. The starting vertices *a* (with incoming degree 0) correspond to quadratic polynomials $x^2 - a^2 = 0$ irreducible in $\mathbb{Z}_n[x]$. This gives us rough upper estimate for the number of components of the graph $G(\mathbb{Z}_p)$.

144

Consider closed paths, or cycles, in G. The cycles are described by the corresponding arrow sequences.

Definition 3.1. The sequence

145

 $(3.1) a \to a^2 \to \dots \to a^{2^k}$

of arrows in G defines a cycle of length k (or a k-cycle) if $\varphi(a^{2^k}) = a$ and $\varphi(a^{2^i}) \neq a^{2^j}$ for all $j \leq i < k$.

We see from figures in Section 5 that there may exist loops (In this work, loops are cycles of length 1) as well as longer cycles. Also, some graphs G_n do contain loop with incoming degree one as a (weakly) connected component and some do not.

The following Proposition shows the essential loops in $G(\mathbb{Z}_n)$.

Proposition 3.2. 1) If \mathbb{Z}_n is a domain, then there are exactly n = 2 loops in G_n , and they correspond to the vertices 0, 1.

2) If \mathbb{Z}_n is not a domain, then there are $n = \# \{x \in \mathbb{Z}_n : x \text{ is idempotent}\}$ loops in *G*.

3) Each connected component of *G* contains exactly one cycle or loop, and the number of connected components is $\# \{x \in \mathbb{Z}_n : x \text{ is idempotent}\} + \# \{\text{cycles of length greater than one}\}.$

Proof: 1) It is clear that if \mathbb{Z}_n is a domain, then the solution of the congruence $x^2 \equiv x \pmod{m}$ is 0, 1. Therefore, there are exactly n = 2 cycles of length 1 in *G*.

2) if \mathbb{Z}_n is not a domain, then the solution of the congruence $x^2 \equiv x \pmod{m}$ is $S = \{x \in \mathbb{Z}_n : x \text{ is idempotent}\}$. Note that the set S is not empty, because $\{0, 1\} \subseteq S$.

3) According to definition 3.1 every component must end with a cycle(loop). Thus (3) follows.

According to Proposition 2.1, we can say that the number of loops in a graph $G(\mathbb{Z}_n)$ is even. However, Definition 3.1 shows that *k*-cycles follow the rule of solving the congruence $x^{2^k} \equiv x \mod n$, which means

$$x^{2^{k}} - x \equiv 0 \pmod{n}$$
$$x\left(x^{2^{k}-1} - 1\right) \equiv 0 \pmod{n}.$$

When *n* is a prime number, then \mathbb{Z}_n is a field, which means there are no zero divisors. Therefore, $x \equiv 0 \pmod{n}$ or $(x^{2^{k-1}} - 1) \equiv 0 \pmod{n}$. Since x = 0 is an idempotent, so it can not be in a *k*-cycle. If $(x^{2^{k}-1}-1) \equiv 0 \pmod{n}$, then $x^{2^{k}-1} \equiv 1 \pmod{n}$. Referring to *Fermat Little Theorem* we have

$$x^{n-1} \equiv 1 \pmod{n}.$$

But 2^k can not be a prime number. Thus we have two cases:

Case I. If $2^{k-1} < \lambda(n)$ then $2^{k-1} | \lambda(n)$. That is, the orders of primitive roots of unity in the ring of integers modulo n are divisors of $\lambda(n)$.

Case II. If $2^{k-1} > \lambda(n)$ then, $x^{2^{k}-1-\lambda(n)} \equiv 1 \pmod{n}$. Furthermore, $x^{2^{k}-1-2\lambda(n)} \equiv 1 \pmod{n}$ and so on. In fact $t = GCD(x^{2^{k}-1},\lambda(n))$ satisfies $x^{t} \equiv 1 \pmod{n}$. So, $x^{t+1} \equiv x \pmod{n}$.

Proposition 2.4 shows us that the cycles in $G(\mathbb{Z}_n)$ can be determined, the number d presents the number of vertices satisfy $x^d \equiv 1 \pmod{n}$. Therfore we have d distinct vertices consist a cycle in this graph. However, we know that x = 1 is hold. Thus there is a cycle of length d - 1 in $G(\mathbb{Z}_n)$. Therefore, cycles in $G(\mathbb{Z}_n)$ can be determined that way.

146

A closed walk might be a cycle, so according to the structure of f_1 , f_2 and the sequence 3.1, we have the following:

Corollary 3.1. A mapping $f: V(\overrightarrow{C_k}) \to V(G)$ is a homomorphism of $\overrightarrow{C_k}$ to G if and only if $f(1), f(2), \dots, f(k)$ is a cycle in G.

From last Corollary we conclude, a closed walk, which is mapped by $f_1(f_2)$ is a cycle. This consequence will be used in this work from now on.

The following Proposition gives a relation between cycles in commutative rings \mathbb{Z}_n , and \mathbb{Z}_p as long as p|n.

Proposition 3.3. Let $\overrightarrow{C_{\alpha}}$ and $\overrightarrow{C_{\beta}}$ be two directed cycles in $G(\mathbb{Z}_n)$ and $G(\mathbb{Z}_p)$ respectively. If $\overrightarrow{C_{\alpha}} \mapsto \overrightarrow{C_{\beta}}$, then we have β divides α .

Proof: Suppose that $\overrightarrow{C_{\alpha}}$ is a α – cycle; that is, $a_1 \rightarrow a_2 \rightarrow ... \rightarrow a_{\alpha}$. Since f_1 is a homomorphism, then

 $f_1(a_1)$, $\rightarrow f_1(a_2) \rightarrow \ldots \rightarrow f_1(a_{\alpha})$

is a cycle in $G(\mathbb{Z}_p)$, and

$$f_{1}(a_{1}) = f_{1}(a_{\alpha}^{2}), \\ = f_{1}(a_{\alpha})f_{1}(a_{\alpha}) \\ = (f_{1}(a_{\alpha}))^{2}$$

Since f_1 connects q elements in \mathbb{Z}_n into every element $a \in \mathbb{Z}_p$, so that gives us two cases:

Case I. If $f_1(a_1) = f_1(a_2)$. Then by sequence 3.1, this process will be repeated for all $f_1(a_i)$, $i = 2, ..., \alpha$. Hence α is divisible by .

Case II. If $f_1(a_1) = f_1(a_j)$, for some $2 < j < \alpha$. Then $f_1(a_i)$, i < j are all different. So according to sequence $3.1 \alpha = t.\beta$, for $1 \le t < \alpha$. Hence α is divisible by .

University Bulletin – ISSUE No.19- Vol. (3) – July - 2017.

147

4. Computer Calculation:

Mathematica notebook is used to calculate the graph properties of $G(\mathbb{Z}_n)$ for $2 \le n \le 100$ such as, number of components, number of longest cycles, and length of longest cycle. Furthermore, basic number theoritic functions are computed to support the study. However, the case n = 1 is omitted, because it is trivial.

From the results in Table 1 and Table 2 one can note the following:

- I. The smallest number of components is 2, because 0 and 1 are idempotents included in \mathbb{Z}_n .
- II. In the digraph $G(\mathbb{Z}_n)$ which has unique longest cycle $\lambda(n) = \phi(n)$.

n	Number of Cycles	Length of Longest Cycle	Number of Longest Cycles	$\lambda(n)$	$\phi(n)$
2	2	1	2	1	1
3	2	1	2	2	2
4	2	1	2	2	2
5	2	1	2	4	4
6	4	1	4	2	2
7	3	2	1	6	6
8	2	1	2	2	4
9	3	2	1	6	6
10	4	1	4	4	4
11	3	4	1	10	10
12	4	1	4	2	4
13	3	2	1	12	12
14	6	2	2	6	6
15	4	1	4	4	8
16	2	1	2	4	8
17	2	1	2	16	16
18	6	2	2	6	6
19	4	6	1	18	18

Table 1. Table of results for $2 \le n \le 50$

148

	Number of	Length of Longest	Number of Longest	1(m)	<i>b</i> (<i>m</i>)
n	Cycles	Cycle	Cycles	$\lambda(n)$	$\varphi(n)$
20	4	1	4	4	8
21	6	2	2	6	12
22	6	4	2	10	10
23	3	10	1	22	22
24	4	1	4	2	8
25	3	4	1	20	20
26	6	2	2	12	12
27	4	6	1	18	18
28	6	2	2	6	12
29	4	3	2	28	28
30	8	1	8	4	8
31	6	4	3	30	30
32	2	1	2	8	16
33	6	4	2	10	20
34	4	1	4	16	16
35	6	2	2	12	24
36	6	2	2	6	12
37	4	6	1	36	36
38	8	6	2	18	18
39	6	2	2	12	24
40	4	1	4	4	16
41	3	4	1	40	40
42	12	2	4	6	12
43	7	6	2	42	42
44	6	4	2	10	20
45	6	2	2	12	24
46	6	10	2	22	22
47	4	11	2	46	46
48	4	1	4	4	16
49	7	6	2	42	42
50	6	4	2	20	20

149

n	Number of Cycles	Length of Longest Cycle	Number of Longest Cycle	$\lambda(n)$	<i>φ</i> (<i>n</i>)
51	4	1	4	16	32
52	6	2	2	12	24
53	3	12	1	52	52
54	8	6	2	18	18
55	6	4	2	20	40
56	6	2	2	6	24
57	8	6	2	18	36
58	8	3	4	28	28
59	3	28	1	58	58
60	8	1	8	4	16
61	6	4	3	60	60
62	12	4	6	30	30
63	10	2	6	6	36
64	2	1	2	16	32
65	6	2	2	12	48
66	12	4	4	10	20
67	6	10	3	66	66
68	4	1	4	16	32
69	6	10	2	22	44
70	12	2	4	12	24
71	7	12	2	70	70
72	6	2	2	6	24
73	4	6	1	72	72
74	8	6	2	36	36
75	6	4	2	20	40
76	8	6	2	18	36
77	10	4	4	30	60
78	12	2	4	12	24
79	6	12	3	78	78
80	4	1	4	4	32
81	5	18	1	54	54
82	6	4	2	40	40
83	4	20	2	82	82

Table 2. Table of results for $51 \le n \le 100$

150

n	Number of Cycles	Length of Longest Cycle	Number of Longest Cycle	$\lambda(n)$	φ(n)
84	12	2	4	6	24
85	4	1	4	16	64
86	14	6	4	42	42
87	8	3	4	28	56
88	6	4	2	10	40
89	3	10	1	88	88
90	12	2	4	12	24
91	10	2	6	12	72
92	6	10	2	22	44
93	12	4	6	30	60
94	8	11	4	46	46
95	8	6	2	36	72
96	4	1	4	8	32
97	3	2	1	96	96
98	14	6	4	42	42
99	10	4	4	30	60
100	6	4	2	20	40

1. Graphs for Some integers *n*

Here are digraphs $G(\mathbb{Z}_n)$ for the values n = 2, 3, 4, 5, 6, 7, 19, 23, 29.

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_2$

1	5	1

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_3$

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_4$

152	University Bulletin – ISSUE No.19- Vol. (3) – July - 2017.

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_6$.

153 University Bulletin – ISSUE No.19- Vol. (3) – July - 2017.	
--	--

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_{19}$.

No.19- Vol. (3) – July - 2017.
[

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_{23}$.

155	University Bulletin – ISSUE No.19- Vol. (3) – July - 2017.
100	

Figure 1. Shown is the graph G(R) with vertices in the finite commutative ring $R = \mathbb{Z}_{29}$

156	University Bulletin – ISSUE No.19- Vol. (3) – July - 2017.
	•

References:

- [1] Wei, Yangjiang, and Gaohua Tang. "The iteration digraphs of finite commutative rings."Turkish Journal of Mathematics 39.6(2015) :872-883.
- [2] Baker, Alan. A concise introduction to the theory of numbers. Cambridge University Press, 1984.
- [3] Ang, Christopher, and Alex Shulte. "Directed Graphs of Commutative Rings with Identity." Rose-Hulman Undergraduate Mathematics Journal 14.1 (2013).
- [4] Koblitz, Neal. A course in number theory and cryptography.Vol. 114.Springer Science & Business Media, 1994.
- [5] Kraft, James S., and Lawrence C. Washington. An introduction to number theory with cryptography.CRC Press, 2016.
- [6] Lipkovski, Aleksandar T. "Digraphs associated with finite rings." Publications de l'InstitutMathematique 92.106 (2012): 35-41.
- [7] Rogers, Thomas D. "The graph of the square mapping on the prime fields." Discrete Mathematics 148.1-3 (1996): 317-324.
- [8] Niven, Ivan, Herbert S. Zuckerman, and Hugh L. Montgomery. An introduction to the theory of numbers. John Wiley & Sons, 2008.
- [9] Bell, E. T. "GH Hardy and EM Wright, An Introduction to the Theory of Numbers." Bulletin of the American Mathematical Society 45.7 (1939): 507-509.

- [10] Childs, Lindsay N. A concrete introduction to higher algebra. New York: Springer, 2009.
- [11] Ireland, Kenneth, and Michael Rosen. A classical introduction to modern number theory. Vol. 84. Springer Science & Business Media, 2013.